Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: comparison with a density mask.
نویسندگان
چکیده
OBJECTIVE We compared multiple neural networks with a density mask for the automatic detection and quantification of ground-glass opacities on high-resolution CT under clinical conditions. SUBJECTS AND METHODS Eighty-four patients (54 men and 30 women; age range, 18-82 years; mean age, 49 years) with a total of 99 consecutive high-resolution CT scans were enrolled in the study. The neural network was designed to detect ground-glass opacities with high sensitivity and to omit air-tissue interfaces to increase specificity. The results of the neural network were compared with those of a density mask (thresholds, -750/-300 H), with a radiologist serving as the gold standard. RESULTS The neural network classified 6% of the total lung area as ground-glass opacities. The density mask failed to detect 1.3%, and this percentage represented the increase in sensitivity that was achieved by the neural network. The density mask identified another 17.3% of the total lung area to be ground-glass opacities that were not detected by the neural network. This area represented the increase in specificity achieved by the neural network. Related to the extent of the ground-glass opacities as classified by the radiologist, the neural network (density mask) reached a sensitivity of 99% (89%), specificity of 83% (55%), positive predictive value of 78% (18%), negative predictive value of 99% (98%), and accuracy of 89% (58%). CONCLUSION Automatic segmentation and quantification of ground-glass opacities on high-resolution CT by a neural network are sufficiently accurate to be implemented for the preinterpretation of images in a clinical environment; it is superior to a double-threshold density mask.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملQuantitative computerized analysis of diffuse lung disease in high-resolution computed tomography.
An automated computerized scheme has been developed for the detection and characterization of diffuse lung diseases on high-resolution computed tomography (HRCT) images. Our database consisted of 315 HRCT images selected from 105 patients, which included normal and abnormal slices related to six different patterns, i.e., ground-glass opacities, reticular and linear opacities, nodular opacities,...
متن کاملEvaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution
Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملAutomatic Detection of Multiple Organs Using Convolutional Neural Networks
We aim to automatically localize multiple organs in a variety of three-dimensional full body CT volumes. We propose performing feature extraction on the CT volumes from the last linear layer of the deep convolutional neural network GoogLeNet, pre-trained on the dataset from the ILSVRC 2014 classification challenge, with subsequent SVM classification. We manually annotated tight bounding boxes a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- AJR. American journal of roentgenology
دوره 175 5 شماره
صفحات -
تاریخ انتشار 2000